Quicksort asymptotics

نویسندگان

  • James Allen Fill
  • Svante Janson
چکیده

The number of comparisons Xn used by Quicksort to sort an array of n distinct numbers has mean μn of order n log n and standard deviation of order n. Using different methods, Régnier and Rösler each showed that the normalized variate Yn := (Xn−μn)/n converges in distribution, say to Y ; the distribution of Y can be characterized as the unique fixed point with zero mean of a certain distributional transformation. We provide the first rates of convergence for the distribution of Yn to that of Y , using various metrics. In particular, we establish the bound 2n−1/2 in the d2-metric, and the rate O(nε−(1/2)) for Kolmogorov–Smirnov distance, for any positive ε. AMS 2000 subject classifications. Primary 68W40; secondary 68P10, 60F05, 60E05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the quicksort asymptotics

In a recent paper, Bindjeme and Fill obtained a surprisingly easy exact formula for the L2-distance of the (normalized) number of comparisons of Quicksort under the uniform model to its limit. Shortly afterwards, Neininger proved a central limit theorem for the error. As a consequence, he obtained the asymptotics of the L3-distance. In this short note, we use the moment transfer approach to re-...

متن کامل

On the tails of the limiting Quicksort distribution

We give asymptotics for the left and right tails of the limiting Quicksort distribution. The results agree with, but are less precise than, earlier non-rigorous results by Knessl and Spankowski.

متن کامل

Refined quicksort asymptotics

The complexity of the Quicksort algorithm is usually measured by the number of key comparisons used during its execution. When operating on a list of n data, permuted uniformly at random, the appropriately normalized complexity Yn is known to converge almost surely to a non-degenerate random limit Y. This assumes a natural embedding of all Yn on one probability space, e.g., via random binary se...

متن کامل

Quicksort Algorithm Again Revisited

We consider the standard Quicksort algorithm that sorts n distinct keys with all possible n! orderings of keys being equally likely. Equivalently, we analyze the total path length n in a randomly built binary search tree. Obtaining the limiting distribution of n is still an outstanding open problem. In this paper, we establish an integral equation for the probability density of the number of co...

متن کامل

M ay 2 00 1 Quicksort Asymptotics

The number of comparisons X n used by Quicksort to sort an array of n distinct numbers has mean µ n of order n log n and standard deviation of order n. Using different methods, Régnier and Rösler each showed that the normalized variate Y n := (X n −µ n)/n converges in distribution, say to Y ; the distribution of Y can be characterized as the unique fixed point with zero mean of a certain distri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Algorithms

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2002